Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High rate (˜7 nm/s), atmospheric pressure deposition of ZnO front electrode for Cu(In,Ga)Se 2 thin-film solar cells with efficiency beyond 15%

Identifieur interne : 000C04 ( Main/Repository ); précédent : 000C03; suivant : 000C05

High rate (˜7 nm/s), atmospheric pressure deposition of ZnO front electrode for Cu(In,Ga)Se 2 thin-film solar cells with efficiency beyond 15%

Auteurs : RBID : Pascal:14-0003223

Descripteurs français

English descriptors

Abstract

Undoped zinc oxide (ZnO) films have been grown on a moving glass substrate by plasma-enhanced chemical vapor deposition at atmospheric pressure. High deposition rates of ˜7 nm/s are achieved at low temperature (200 °C) for a substrate speed from 20 to 60 mm/min. ZnO films are highly transparent in the visible range (90%). By a short (∼minute) post-deposition exposure to near-ultraviolet light, a very low resistivity value of 1.6.10-3Ω cm for undoped ZnO is achieved, which is independent on the film thickness in the range from 180 to 1200nm. The photo-enhanced conductivity is stable in time at room temperature when ZnO is coated by an Al2O3 barrier film, deposited by the industrially scalable spatial atomic layer deposition technique. ZnO and Al2O3 films have been used as front electrode and barrier, respectively, in Cu(In,Ga)Se2 (CIGS) solar cells. An average efficiency of 15.4±0.2% (15 cells) is obtained that is similar to the efficiency of CIGS reference cells in which sputtered ZnO:Al is used as electrode. Copyright © 2013 John Wiley & Sons, Ltd.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0003223

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High rate (˜7 nm/s), atmospheric pressure deposition of ZnO front electrode for Cu(In,Ga)Se
<sub> 2 </sub>
thin-film solar cells with efficiency beyond 15%</title>
<author>
<name sortKey="Illiberi, Andrea" uniqKey="Illiberi A">Andrea Illiberi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology, PO Box 6235</s1>
<s2>5600 HE Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 HE Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grob, Frank" uniqKey="Grob F">Frank Grob</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology, PO Box 6235</s1>
<s2>5600 HE Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 HE Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Frijters, Corne" uniqKey="Frijters C">Corne Frijters</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology, PO Box 6235</s1>
<s2>5600 HE Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 HE Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Poodt, Paul" uniqKey="Poodt P">Paul Poodt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology, PO Box 6235</s1>
<s2>5600 HE Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 HE Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramachandra, Ram" uniqKey="Ramachandra R">Ram Ramachandra</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology, PO Box 6235</s1>
<s2>5600 HE Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 HE Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Winands, Hans" uniqKey="Winands H">Hans Winands</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology, PO Box 6235</s1>
<s2>5600 HE Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 HE Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Simor, Marcel" uniqKey="Simor M">Marcel Simor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology, PO Box 6235</s1>
<s2>5600 HE Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 HE Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jan Bolt, Pieter" uniqKey="Jan Bolt P">Pieter Jan Bolt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology, PO Box 6235</s1>
<s2>5600 HE Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 HE Eindhoven</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0003223</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0003223 INIST</idno>
<idno type="RBID">Pascal:14-0003223</idno>
<idno type="wicri:Area/Main/Corpus">000376</idno>
<idno type="wicri:Area/Main/Repository">000C04</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alumina</term>
<term>Atmospheric pressure</term>
<term>Atomic layer method</term>
<term>Coated material</term>
<term>Coatings</term>
<term>Conducting material</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Deposition rate</term>
<term>Electrical conductivity</term>
<term>Gallium selenides</term>
<term>Glass</term>
<term>Indium selenides</term>
<term>Low temperature</term>
<term>Near ultraviolet radiation</term>
<term>PECVD</term>
<term>Performance evaluation</term>
<term>Quaternary compound</term>
<term>Room temperature</term>
<term>Scalability</term>
<term>Solar cell</term>
<term>Thickness</term>
<term>Thin film</term>
<term>Thin film cell</term>
<term>Transparent material</term>
<term>Ultraviolet radiation</term>
<term>Visible spectrum</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pression atmosphérique</term>
<term>Cellule couche mince</term>
<term>Cellule solaire</term>
<term>Evaluation performance</term>
<term>Méthode PECVD</term>
<term>Vitesse dépôt</term>
<term>Basse température</term>
<term>Spectre visible</term>
<term>Rayonnement UV proche</term>
<term>Rayonnement UV</term>
<term>Conductivité électrique</term>
<term>Epaisseur</term>
<term>Température ambiante</term>
<term>Revêtement</term>
<term>Extensibilité</term>
<term>Méthode couche atomique</term>
<term>Oxyde de zinc</term>
<term>Cuivre</term>
<term>Verre</term>
<term>Matériau revêtu</term>
<term>Alumine</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Couche mince</term>
<term>Matériau conducteur</term>
<term>Matériau transparent</term>
<term>ZnO</term>
<term>Al2O3</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Undoped zinc oxide (ZnO) films have been grown on a moving glass substrate by plasma-enhanced chemical vapor deposition at atmospheric pressure. High deposition rates of ˜7 nm/s are achieved at low temperature (200 °C) for a substrate speed from 20 to 60 mm/min. ZnO films are highly transparent in the visible range (90%). By a short (∼minute) post-deposition exposure to near-ultraviolet light, a very low resistivity value of 1.6.10
<sup>-3</sup>
Ω cm for undoped ZnO is achieved, which is independent on the film thickness in the range from 180 to 1200nm. The photo-enhanced conductivity is stable in time at room temperature when ZnO is coated by an Al
<sub>2</sub>
O
<sub>3</sub>
barrier film, deposited by the industrially scalable spatial atomic layer deposition technique. ZnO and Al
<sub>2</sub>
O
<sub>3</sub>
films have been used as front electrode and barrier, respectively, in Cu(In,Ga)Se2 (CIGS) solar cells. An average efficiency of 15.4±0.2% (15 cells) is obtained that is similar to the efficiency of CIGS reference cells in which sputtered ZnO:Al is used as electrode. Copyright © 2013 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High rate (˜7 nm/s), atmospheric pressure deposition of ZnO front electrode for Cu(In,Ga)Se
<sub> 2 </sub>
thin-film solar cells with efficiency beyond 15%</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ILLIBERI (Andrea)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GROB (Frank)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FRIJTERS (Corne)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>POODT (Paul)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RAMACHANDRA (Ram)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WINANDS (Hans)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SIMOR (Marcel)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>JAN BOLT (Pieter)</s1>
</fA11>
<fA14 i1="01">
<s1>TNO, Thin Film Technology, PO Box 6235</s1>
<s2>5600 HE Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>1559-1566</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000504265510010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>42 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0003223</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Undoped zinc oxide (ZnO) films have been grown on a moving glass substrate by plasma-enhanced chemical vapor deposition at atmospheric pressure. High deposition rates of ˜7 nm/s are achieved at low temperature (200 °C) for a substrate speed from 20 to 60 mm/min. ZnO films are highly transparent in the visible range (90%). By a short (∼minute) post-deposition exposure to near-ultraviolet light, a very low resistivity value of 1.6.10
<sup>-3</sup>
Ω cm for undoped ZnO is achieved, which is independent on the film thickness in the range from 180 to 1200nm. The photo-enhanced conductivity is stable in time at room temperature when ZnO is coated by an Al
<sub>2</sub>
O
<sub>3</sub>
barrier film, deposited by the industrially scalable spatial atomic layer deposition technique. ZnO and Al
<sub>2</sub>
O
<sub>3</sub>
films have been used as front electrode and barrier, respectively, in Cu(In,Ga)Se2 (CIGS) solar cells. An average efficiency of 15.4±0.2% (15 cells) is obtained that is similar to the efficiency of CIGS reference cells in which sputtered ZnO:Al is used as electrode. Copyright © 2013 John Wiley & Sons, Ltd.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Pression atmosphérique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Atmospheric pressure</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Presión atmosférica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Méthode PECVD</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>PECVD</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Vitesse dépôt</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Deposition rate</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Velocidad deposición</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spectre visible</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Visible spectrum</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espectro visible</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Rayonnement UV proche</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Near ultraviolet radiation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Radiación ultravioleta próxima</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Rayonnement UV</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Radiación ultravioleta</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Température ambiante</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Room temperature</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Temperatura ambiente</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Revêtement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Coatings</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Revestimiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Extensibilité</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Scalability</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estensibilidad</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Méthode couche atomique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Atomic layer method</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Método capa atómica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Verre</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Glass</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Alumine</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Alumina</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Alúmina</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>30</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>30</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>31</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>31</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>31</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Matériau conducteur</s0>
<s5>32</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Conducting material</s0>
<s5>32</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Material conductor</s0>
<s5>32</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>33</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>33</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>33</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Al2O3</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>006</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C04 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C04 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0003223
   |texte=   High rate (˜7 nm/s), atmospheric pressure deposition of  ZnO front electrode for Cu(In,Ga)Se  2  thin-film solar cells  with efficiency beyond 15%
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024